INTRODUCTION

Transdermal drug delivery system is convenient route for the delivery of drugs having short biological half life. Transdermal drug delivery is based on absorption of drugs into the skin after topical application. Transdermal patches are pharmaceutical preparation of varying sizes containing one or more active ingredients that when applied to skin deliver drug directly into systemic circulation after passing through skin barrier. Penetration enhancers are the substances used to increase permeation of skin mucosa. Penetration enhancer increases the absorption of penetrant through the skin which is also known as absorption promoter or absorption enhancers. Penetration enhancers used to increase the permeability of drug through skin.

Ideal Properties of Penetration Enhancers

1. These materials should be non toxic, non irritating, pharmacologically inert, non allergic.
2. It should be compatible with drug and excipients.
3. It should have no pharmacological activity within body.
4. It should be cosmically acceptable.
5. It should be odorless, tasteless, colorless and inexpensive and have good solvent properties.
6. It should be chemically and physically stable.
7. Duration of action should be both predictable and reproducible and work rapidly.
8. It should be tested in research laboratories.

Uses of Penetration Enhancers

1. It is used to increase the delivery of ionizable drugs. Example: timolol maleate etc.
2. To deliver the impermeable drugs. Example: heparin etc.
3. To maintain level in blood.
4. To improve the efficacy of less potent drugs with higher dose. Example: oxymorphine.
5. To deliver the drugs having high molecular weight like peptide and hormones.
6. To decrease lag time of transdermal drug delivery system.

Merits of Penetration Enhancers

Review Article

Recent development in Penetration Enhancers and Techniques in Transdermal Drug Delivery System

Sushila Saini¹, Shikha Baghel Chauhan, S.S. Agrawal

Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India

ABSTRACT

Transdermal route is the most convenient route for the delivery of drug having short biological half life and poorly soluble drugs. This route provides many advantages over other routes as avoiding first pass hepatic metabolism, decrease side effects, GI effects and increased bioavailability. There is a limitation of this route that is difficulty of permeation of drug through the skin. The skin, in particular stratum corneum provides protective barrier that prevents the loss of physiologically essential substances and provide resistance to penetration and it is the rate limiting step in percutaneous absorption. So, various Penetration Enhancers have been used to promote the percutaneous absorption of a number of drugs. Several research studies have been done in transdermal permeation studies using various enhancers for several drug moieties. This review highlights the detailed role of penetration enhancers and describes the classification of different penetration enhancers with their mechanism of action and properties. This review also focuses on the Novel Penetration Enhancers and the various factors to be taken into consideration for selection of new penetration enhancers for improving bioavailability of transdermal drug delivery system.

Keywords: Penetration enhancers, Novel enhancers, stratum corneum, Percutaneous absorption.
1. Most drugs penetrate at rates sufficiently high for therapeutic efficiency by using penetration enhancers.
2. It is useful for unabsorbable drugs to facilitate their absorption through skin.
3. It can improve transdermal absorption of topical preparation.
4. They having no adverse effect on skin.
5. These may be non toxic materials.
6. These do not affect zero order skin permeation profile of skin.
7. The terpenes like limonene in propylene glycol solution are effective penetration enhancer for cytotoxic drugs.
8. It also acts as rate limiting factor.

Demerits of Penetration Enhancers
1. The effective concentration varies from drug to drug.
2. The uses of different penetration enhancer with various concentrations are restricted completely.
3. Physicochemical properties of enhancers are also affecting the side effects in the body.

Pathway of Transdermal Permeation
Permeation occur by diffusion via
1. Transdermal permeation through the stratum corneum.
2. Intercellular permeation through stratum corneum.
3. Transappendaged permeation via hair follicle, sebaceous and sweat glands.

MECHANISM OF ACTION OF PENETRATION ENHANCERS
Different Penetration Enhancers have different mechanism of action. The miscibility and solution properties of enhancers can be responsible for enhanced transdermal delivery of water soluble drugs. Mechanisms for penetration enhancement of oil soluble drugs are due to partial leaching of epidermal lipids by this improvement of drug permeation through skin. To increase penetration of lipophilic compounds for this necessary to modify partitioning characteristics at the stratum corneum viable tissue interface. This may be possible by combining a penetration enhancer with a co-solvent. Some enhancers cause keratin to swell and leach out essential structural material from the stratum corneum thus reducing the diffusional resistance and increasing the permeability.
TABLE 1: CLASSIFICATION OF PENETRATION ENHANCERS AND TECHNIQUES

<table>
<thead>
<tr>
<th>Types/Techniques of penetration enhancers</th>
<th>Mechanism of action</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chemical enhancers</td>
<td>They act by three mechanisms(^6)</td>
<td>1. Sulphoxides and similar chemicals-dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), dimethyl acetamide (DMAC)</td>
</tr>
<tr>
<td></td>
<td>1. By disruption of highly ordered structure of stratum corneum lipid.</td>
<td>2. Azones</td>
</tr>
<tr>
<td></td>
<td>2. By interaction with intercellular protein.</td>
<td>3. Pyrrolidones</td>
</tr>
<tr>
<td></td>
<td>3. By improved partition of the drug or solvent into stratum corneum.</td>
<td>4. Fatty acids—Lauric acid, Myristic acid and capric acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Oxizolidinones (4-decyloxazolidine-2-one)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Amines and Amides – Urea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Surface active agents—sodium lauryl sulphate, Benzalkonium chloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Cyclodextrins</td>
</tr>
<tr>
<td>2. Drug Vehicle Based</td>
<td>Interaction of enhancers with stratum corneum and development of SAR for enhancing with optimal characteristics and minimal toxicity(^8)</td>
<td>Ion pairs and complex Coacervates chemical potential adjustment</td>
</tr>
<tr>
<td></td>
<td>It may increase one or more of following effects(^8)</td>
<td>2. Essential oil—Basil oil, Neem oil, Eucalyptus, Chenopodium, Ylang-Ylang</td>
</tr>
<tr>
<td></td>
<td>1. Partition coefficient</td>
<td>1. Iontophoresis</td>
</tr>
<tr>
<td></td>
<td>2. Diffusion coefficient</td>
<td>2. Sonophoresis</td>
</tr>
<tr>
<td></td>
<td>3. Lipid Extraction</td>
<td>3. Phonophoresis</td>
</tr>
<tr>
<td></td>
<td>5. Macroscopic Barrier Perturbation</td>
<td>5. Electroporation</td>
</tr>
<tr>
<td></td>
<td>6. Molecular Orientation of Terpenes Molecule with Lipid Bilayer</td>
<td>6. Thermophoresis</td>
</tr>
<tr>
<td>4. Physical Enhancers</td>
<td>These are variable techniques available for increasing the penetration by physical separation and magnetic and ultrasonic.</td>
<td>7. Radiofrequency</td>
</tr>
<tr>
<td>5. Biochemical Approach</td>
<td>They act by modifying substances by converting it into suitable form.</td>
<td>8. Needleless injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Stripping of stratum corneum</td>
</tr>
</tbody>
</table>

CHEMICAL ENHANCERS

1. SULPHOXIDES AND SIMILAR CHEMICALS

It is one of earliest and most widely used penetration enhancer. Since DMSO is problematic for use, researchers investigated similar chemically related material as enhancers DMAC (Dimethyl acetamide), DMF (Dimethyl formamide). Mechanism of Sulphoxide Penetration enhancer are widely used to denature protein and on application to human skin has been shown to change the intercellular keratin configuration, from helical to beta sheet.

DMF irreversibly damages human skin membrane but has been found *in vivo* to promote the bioavailability of betamethasone-17-benzoate as measured by vasoconstrictor assay.\(^9\)

2. AZONES
Azone6 is a highly lipophilic material. It enhances skin transport of a variety of drugs including steroids, antibiotic and antiviral agents. It is effective at low concentration between 0.1-5% but more often between 1-3%. Azone molecules may exist dispersed within the barrier lipid or separate domains within the Bilayer9. When Azone was used in combination with PG, the flux of methotrexate and Piroxicam increased significantly. Azone is the most effective penetration enhancer for low molecular weight heparin across human skin as compared with terpenes. The order of enhancing power of enhancers laurocapram > nerolidol > eucalyptol.10

3. PYRROLIDONES

(2-Pyrrolidone)6

It is used to generate reservoirs within skin membrane. Such a reservoir effect offers a potential for sustained release of a permeant from the stratum corneum over extended time periods. N-Methyl-2-Pyrrolidone (NMP) widely used to enhance skin absorption of many drugs example insulin and ibuprofen and Flurbiprofen. NMP enhanced permeation of anti-inflammatory drugs like ketoprofen. 2-Pyrrolidone and NMP were assessed in enhancing topical bioavailability of betamethasone-17-benzoate using Dimethylisosorbide (DMI) as standard solvent. 2-Pyrrolidone enhances Transdermal permeation of caffeine.9

4. FATTY ACIDS AND ESTERS

(9Z)-Octadec-9-enoic acid

It has been seen that unsaturated fatty acids are more effective than saturated fatty acids. Fatty acids having greater enhancing effect on lipophilic drugs. Oleic acid is mono-unsaturated fatty acid increase the permeation of lipophilic drugs through skin and buccal mucosa by transdermal cellular pathway. It is an effective enhancer for Piroxicam.11 Lauric acid used in propylene glycol enhanced the delivery of highly lipophilic antiestrogen9. It increases flux of many drugs examples are salicylic acid 28 folds and 5-flurouracil flux 56 folds. Myristic acid in combination PG increased permeation of Oxymorphane. In organophosphate poisoning, a patch of Propionic acid and Oleic acid produced greater transdermal delivery of Physostigmine than Propionic acid alone.10

5. OXAZOLIDINONES

1, 3-oxazolidin-2-one6

Oxazolidinones have ability to localize co-administrated drug in skin layer. The structural features are related to sphingosine and ceramide lipids which are naturally found in upper skin layers11. Oxazolidinones such as 4-decyloxazolidin-2-one has been reported to localize the delivery of many active ingredients such as retinoic acid in skin layer.11
6. AMINES AND AMIDES
Cyclic Urea is biodegradable and non toxic molecule. Enhancement occurs by both hydrophilic activity and lipid disruption. Urea used as hydrating agent in dermatology for the treatment of neurodermatitis and other hyperkeratotic skin conditions.9

7. SURFACE ACTIVE AGENTS
Surface active agents are added to formulation to solubilize lipophilic active ingredients. So, they can solubilize the lipids within stratum corneum.

Function by adsorption at interfaces and thus interact with biological membrane contributing to overall penetration enhancement of compounds.9

Three types of surface active agents are12

- **Cationic surfactant**: Benzalkonium chloride, Cetyltrimethyl Ammonium bromide.
- **Nonionic surfactant**: Dodecyl betaine.
- **Anionic surfactant**: Sodium lauryl sulphate.

Function of Anionic and Cationic surfactant are they swell the stratum corneum and interact with intercellular keratin.

Surfactants are low to moderate molecular weight compounds which contain one hydrophobic part, which is readily soluble in oil but sparingly soluble or insoluble in water, and one hydrophilic part, which is sparingly soluble or insoluble in oil but readily soluble in water.

8. CYCLODEXTRINS
These compounds form complexes with lipophilic drugs. Alone are less effective as penetration enhancer than combined with fatty acid and propylene glycol.9

2. Drug selection
Drug should be selected as it fits in criteria of transdermal delivery. Prodrug approach enhances the drug permeation through skin.

There are certain criteria of drug selection as14

- Aqueous solubility > 1mg/ml
- Lipophilicity 10<ko/w<1000
- Molecular weight <500 Daltons
- PH of aqueous saturated solution 5-9
- Dose deliverable <10mg/day

9. NATURAL PENETRATION ENHANCERS

Essential oils, Terpenes and Terpenoids15

Chemical structure of Terpenes and Terpenoids consist of number of repeated isoprene (C5H8) units which is used to classify terpenes.

- **Monoterpenes**: have two isoprene units.
- **Sesquiterpenes**: have three isoprene units.
- **Diterpenes**: have four isoprene units.

Terpenes and Terpenoids are constituted of volatile oil.

Terpenes are compounds comprising of only Carbon, Hydrogen and Oxygen alone.

Eucalyptus, Chenopodium, Ylang-Ylang are effective penetration enhancers for 5-flourouracil.

1. **Cineole**: It is Monoterpenoid. It is also known as1, 8-Cineol, 1, 8-cineole, Limonene oxide, Cajeputol, 1, 8- epoxy-p-methane, 1,8-oxido-p-me-thane, eucalyptol etc. It is used in suppository form for the treatment of respiratory ailments. It is also used as flavoring agent. It is used in Cosmetic, Mouthwash and Cough suppressant.

2. **Eugenol**: It is slightly soluble in water and soluble in organic solvents. It is a member of ally benzene class of chemical compounds. It is extracted from essential oils especially from nutmeg, clove oil, cinnamon and bay leaf. It reduces the ability to feel and react to painful stimulation.

3. **D-Limonene**: It is extracted from rinds of citrus fruits. It has two grades which are called food grade and technical grade.

4. **Menthol**: It is used in antipruritic creams and as an
upper respiratory tract decongestant. It is obtained from flowering tops of *Mentha piperita*. It is used as an enhancer for transdermal delivery of variety of drugs including caffeine, hydrocortisone, and Propranolol hydrochloride.

PHYSICAL ENHANCERS

There are numerous physical methods are used for penetration enhancers

1. **Iontophoresis**

It was developed to facilitate the delivery of ionized solute, with inherently low partition coefficients due to their charged states, across tissue membranes. The techniques involves the application of a small electric current to a drug reservoir on the surface of the skin, with the same charged electrode as the solute of interest placed together to produce a repulsion effect that effectively drives the solute molecules away from the electrode and into skin.

2. **Sonophoresis**

It is the application of ultrasound to enhance the percutaneous drug delivery. The effect of ultrasound on tissue is either thermal or non thermal with the non thermal cavitations effect thought to be the most important in its application to drug delivery.

3. **Magnetophoresis**

It Consist of magnetic nanoparticles wrapped by a phospholipids Bilayer which can be applied for drug delivery systems. It acts as an external driving force to enhance drug delivery across the skin.

4. **Thermal energy**

Thermal energy when applied to skin, cause increased skin permeability. Heating during topical application of a drug dilates penetration pathway in the skin and increase kinetic energy and movement of particles in the treated area which facilitates drug absorption.

5. **Electroporation**

It involves the application of short, high voltage pulses to skin. The Mechanism by formation of transient pores due to electric pulses that subsequently allow the passage of Macromolecule from outside of the cell to the intracellular space.

6. **Hydration of stratum, corneum**

Permeability varies according to skin condition. Hydrated skin is more permeable than dry skin. Hydration of skin reduces resistance by loosening the packaging of layers of stratum corneum.

MISCELLANEOUS ENHANCERS

1. **Clofibric Acid**

The best enhancement of hydrocortisone-21 acetate and betamethasone-17-valerate was observed with Clofibric acid octyl amide when applied 1 hr prior to each steroid. Amide analogues are generally more effective than ester derivatives of the same carbon chain length.

2. **Phospholipids**

Phosphatidyl Choline derivatives promoted the percutaneous penetration of erythromycin. Six phosphatidyl glycerol derivatives (PGE [from egg yolk], PGS [from soyabean], dimyristyl phosphatidyl glycerol [DMPG], dipalmityl phosphatidyl glycerol [DPPG], distearyl phosphatidyl glycerol [DSPG], dioleyl phosphatidyl glycerol [DOPG] derivatives); five phosphatidyl Choline (PC) derivatives (PCS [from soyabean], PCE [from egg yolk], dioleyl PC [DOPC], dilinoleoyl PC [DLPC], hydrogenated PC [HPC]); and two phosphatidyl ethanolamine derivatives were studied using indomethacin.

3. **Lipid synthesis inhibitors**

It enhances the delivery of some drugs like Lidocaine and caffeine Fatty acid synthesis inhibitors like 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA) and the cholesterol synthesis inhibitors fluvastatin (FLU) or cholesterol sulfate (CS) delay the recovery of barrier damage produced by prior application of penetration enhancers like DMSO, acetone, and the like.

NOVEL PENETRATION ENHANCERS

Numerous class of novel compounds have been evaluated for penetration enhancement activity,
including soft enhancement for percutaneous absorption (SEPA), for example, 2 N-nonyl-1,3-dioxolanes, N-acetyloproline esters (such as pentyl- and octyl-N-acetyloproline), alkylsiloxanes (e.g., 1-Alkyl-3-b-D-glucopyranosyl-1,1,3,3-tetramethyl disiloxanes), transcarbam(such as 5-(dodecylxoycarbonyl)pentylammonium-5-(dodecylxoycarbonyl)pentylcarbamate), iminosulfuran e (like N-hexyl,N-benzoyl,S,S-dimethylliminosulfuranes), capsaicin derivatives (e.g., Nonivamide), cinnamene compounds (such as cinnamic acid, Cinnamaldehyde etc), terpenes (like clove and basil oil) and synergistic combination of penetration enhancers (SCOPE).16

EXAMPLES OF NOVEL NATURAL PENETRATION ENHANCERS

BASIL OIL
It is the natural penetration enhancer. It is used to enhance the permeability of drug across the skin. It is used as Antibacterial, Antioxidant, and Diuretic.

Mechanism act by extraction of lipids from stratum corneum as well as by loosening the H-bonds between ceramide subsequently leading to fluidization of lipid layer.17

Research Studies
These articles were cited that Basil oil used as skin penetration enhancer for transdermal delivery of Labetolol Hydrochloride. Basil oil is used as a potential enhancer with reference to Camphor, Geraniol, Thymol and Clove oil. It concludes that Basil oil produced the maximum enhancement over neat vehicle among all enhancers. Activation energies for Labetolol Hydrochloride Permeation in water, Vehicle per se and in presence of 5% w/v Basil oil were found to be 23.16,18.71,10.98 kcal/mole respectively. Lowering of activation energies in presence of Basil oil suggest creation of new polar pathways in skin for enhanced permeation of Labetolol Hydrochloride.18

Basil oil used for the improvement in bioavailability of transdermally applied Flurbiprofen. It concludes that bioavailability of transdermal Flurbiprofen using basil oil with reference to orally administered Flurbiprofen in albino rats is found to increased by 2.97,3.80 and 5.56 times.19

Basil oil used to develop transdermal gel of naproxen containing Basil oil as a natural penetration enhancer for improved penetration of Naproxen.

CLOVE OIL
It is a natural penetration enhancer. It is used to enhance the permeability of drug across the skin. It is used safely in food, beverages, and toothpaste. It is also used as Antiseptic and Analgesic.

Research Studies
These articles were cited that Evaluated skin permeation effect of clove oil in rabbits and compare in vitro absorption and in vivo permeation using ibuprofen. It concludes that after using Clove oil the permeation rate enhanced was 7.3.19

Clove oil used as penetration enhancer in formulation and evaluation of antiarthritic herbal preparation (ointment).20

CAPSAICIN
It is used as penetration enhancer to increase the permeability of drug across the skin. Topical Capsaicin formulations are used for pain management.

Mechanism- several mechanism are involved. These include receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes and activation of proteolytic enzymes processes. Systemic and Topical capsaicin produces a reversible antinociceptive and anti-inflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial pungency. Systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is subsequently blocked by a prolonged inactivation of sensory neurotransmitter release. Local or topical application of capsaicin blocks C-fiber conduction and inactivates neuropeptide release from peripheral
nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation respectively.21

Research Studies
These articles were cited that In vitro study was conducted to investigate the changes of indomethacin transdermal permeation pretreated by Capsaicin and Nonivamide, two compounds chemically similar to Azone. Both enhanced the flux of indomethacin across nude mouse skin. Better effect was obtained by the combination with capsaicin than Nonivamide. Investigate the penetration properties of naproxen and the enhancer activity of capsaicin. The effect of capsaicin was compared with well known enhancer Azone. Different amounts of chosen enhancers were applied to the skin surface before the experiment. Commercially available naproxen gel formulation and an alternative formulation containing 3 % capsaicin were also studied and results were compared. Penetrations were found to be increased when the skin was treated with Azone and capsaicin. It was found that capsaicin caused some alterations on stratum corneum layer of the skin like Azone therefore it was observed that capsaicin caused an enhanced penetration of naproxen through human skin. It concludes that capsaicin was found to be a quite capable enhancer for skin penetration of drugs like the well-known enhancer, Azone.22 A high concentration Capsaicin 8% patch was recently approved in the EU and USAA single 60 min application in patients with neuropathic pain produced effective pain relief for up to 12 weeks. Advantages of using capsaicin patch include patient compliances, longer duration of action. Mechanism of action of patch of capsaicin has been ascribed to depletion of Substance P. Topical capsaicin acts in the skin to attenuate cutaneous hypersensitivity and reduce pain by a process as Defunctionalization of nociceptor fibers. It suggests that the utility of Topical capsaicin may extend beyond peripheral neuropathies.23

EXAMPLES OF NOVEL SYNTHETIC PENETRATION ENHANCERS

Cinnamene Compounds
Research Studies
This article was cited that the Cinnamene compounds, cinnamic acid, Cinnamaldehyde and cinnamic alcohol were used as penetration enhancers for transdermal delivery of the ligustrazine hydrochloride. The effects and mechanism of penetration promotes on the in vitro percutaneous absorption of ligustrazine hydrochloride through porcine dorsal skin. It concludes that the penetration of ligustrazine hydrochloride by cinnamic acid was the greatest.24

EDOTA (ETHYL (3, 7-DIMETHYL OCTYL THIO) ACETATE) AND DOP (3, 7 DIMETHYL OCTYL PROPIONATE)

Research Studies
This article was cited that the penetration-enhancing effect of the new enhancers were compared with THG and Azone in vitro using rat skin in modified Franz-type diffusion cells. 5-Fluorouracil (5-FU), a hydrophilic drug with poor skin permeability was used as a model permeant. Skin samples were pretreated with pare liquid enhancers for 12 h. EDOTA and DOP interacted with the skin rapidly (<2 h), and the duration of action is at least 24 h. Significant differences were found in the flux values of 5-FU; EDOTA and DOP enhanced the permeability of the drug about 6-fold and 11-fold respectively. Increased partition coefficient and diffusion coefficient values were obtained by these enhancers. It concludes that the amount of EDOTA and DOP in the skin, especially in the stratum corneum, may be related to their penetration-enhancing effect.25

CONCLUSION
Skin penetration enhancers are rapidly using technique for the permeation of drugs through the skin by transdermal drug delivery system. Penetration enhancers plays critical role in development of patches. As it was seen in different articles that it
improves the bioavailability and efficacy of drugs. It helps in achieving therapeutic dose of drug through the skin. Different approaches are applied like physical enhancers, chemical enhancers, natural enhancers etc. These approaches are very useful for the drugs having low permeable property, low soluble drugs and for the drugs having short biological half life.

REFERENCES
23. P Anand, K Bley: Topical Capsaicin for pain management therapeutic potential and mechanism

Source of Support: Nil, Conflict of Interest: Nil